
1

USER-STACK:

essential knowledge to
Memory Corruption study

Filipe Xavier de Oliveira
engfilipeoliveira89@gmail.com

filipe.xavier@tempest.com.br

ABSTRACT

Over the years, attacks on memory corruption have become complex and distant from

the reality of many security analysts and researchers. User-Stack is one of the primary

topics surrounding memory corruption techniques; even so, it has often been poorly

studied. Besides, being interested in memory corruption, and not mastering the

knowledge about User-Stack, will certainly bring frustrations to those who wish to

pursue a career in the field. Therefore, this article aims to teach, within the scope of

the Windows operating system, not only the principles, but above all, the defense and

attack aspects related to the User-Stack; aiming to serve both those who want to start

their knowledge on the topic, as well as those who already have some experience with

the stack.

Keywords: Stack, Canary, Convention, Thread.

2

INTRODUCTION

Stack-related attacks have had their moment of glory in the past. When it wasn’t too

complicated to successfully exploit vulnerable software, this could easily be done

through a stack overflow.

Over time, processor and operating system development teams have contributed to

better security, usability and stack management. Thus, today, it’s necessary for

security professionals to fully understand the systems under attack, in order to have a

full understanding of the stack's operation, as well as the strategies developed to

protect it.

SCOPE

Most concepts and codes to be presented, will consider the x86 architecture.

However, at the end of the article, the main differences of this architecture will be

presented in comparison with the x64.

THREADS

“A thread is an entity within a process that
Windows schedules for execution. Without

it, the process’s program can’t run.”

MICROSOFT, Windows Internals Part1.

To understand the process of creating and handling the stack, we must take a step

back and understand a little about the basic use of threads in Windows. A thread has

some components that define it, including user-stack and kernel-stack.

The thread's stacks are part of a set – the thread’s Context. It’s important to know that

there are other elements in the thread's Context. In addition, this set of information,

3

brought by the context of the thread, is different for each architecture, in order to

maintain compatibility with the different systems. Let's see below, the function

responsible for creating the thread's Context of a process:

BOOL GetThreadContext(

 HANDLE hThread,

 LPCONTEXT lpContext

);

The lpContext parameter is a pointer to the structure called CONTEXT, which contains

the necessary information for the thread. Next, we have the CreateThread API, a

function used to create threads:

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 __drv_aliasesMem LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

The dwStackSize parameter sets the stack size. If a null (zero) value is passed in the

dwStackSize parameter, the stack will have its default size, which is 1MB. It is also

possible to change the stack size using the compilation flag /STACK:reserve present

in Microsoft C/C++. When a new process is created, Windows always establishes, by

default, the dwStackSize to null.

Below, we have another option used in the creation of threads, where the

dwStackSize parameter also sets the stack size:

LPVOID CreateFiber(

 SIZE_T dwStackSize,

 LPFIBER_START_ROUTINE lpStartAddress,

4

 LPVOID lpParameter

);

A thread has two types of main structures at the level of the operating system:

ETHREAD and KTHREAD. Whereas, the KTHREAD structure is contained as the first

member of ETHREAD. Through a debugger, it’s possible to obtain the following

ETHREAD information1:

lkd> dt nt!_ethread
 +0x000 Tcb : _KTHREAD
 +0x600 CreateTime : _LARGE_INTEGER
 +0x608 ExitTime : _LARGE_INTEGER
 +0x608 KeyedWaitChain : _LIST_ENTRY
 +0x618 PostBlockList : _LIST_ENTRY
 +0x618 ForwardLinkShadow : Ptr64 Void
 +0x620 StartAddress : Ptr64 Void
 +0x628 TerminationPort : Ptr64 _TERMINATION_PORT
 +0x628 ReaperLink : Ptr64 _ETHREAD
 +0x628 KeyedWaitValue : Ptr64 Void
 +0x630 ActiveTimerListLock : Uint8B

Below, we can see the KTHREAD, with the elements destined for the stack in bold:

lkd> dt nt!_kthread
 +0x000 Header : _DISPATCHER_HEADER
 +0x018 SListFaultAddress : Ptr64 Void
 +0x020 QuantumTarget : Uint8B
 +0x028 InitialStack : Ptr64 Void
 +0x030 StackLimit : Ptr64 Void
 +0x038 StackBase : Ptr64 Void
 +0x040 ThreadLock : Uint8B
 +0x048 CycleTime : Uint8B
 +0x050 CurrentRunTime : Uint4B
 +0x054 ExpectedRunTime : Uint4B
 +0x058 KernelStack : Ptr64 Void
 +0x060 StateSaveArea : Ptr64 _XSAVE_FORMAT
 +0x068 SchedulingGroup : Ptr64 _KSCHEDULING_GROUP
 +0x070 WaitRegister : _KWAIT_STATUS_REGISTER
 +0x071 Running : UChar

1 For the following examples, the Windbg debugger in Kernel mode was used on the local machine.

5

 +0x072 Alerted : [2] UChar
 +0x074 AutoBoostActive : Pos 0, 1 Bit
 +0x074 ReadyTransition : Pos 1, 1 Bit
 +0x074 WaitNext : Pos 2, 1 Bit
 +0x074 SystemAffinityActive : Pos 3, 1 Bit
 +0x074 Alertable : Pos 4, 1 Bit
 +0x074 UserStackWalkActive : Pos 5, 1 Bit

For User-Stack learning, it isn’t necessary to understand in depth the elements of the

ETHREAD structure. The important thing here, is to visualize the link that the stacks

have with the thread.

Another structure that also carries information about the stack is the TEB (Thread

Environment Block). However, unlike the previous ones, this one needs to exist in the

memory addressing of the process.

In the case below, using the !teb command, it’s possible to view the TEB of a process,

with the elements destined for the stack also in bold:

0:000> !teb
TEB at 005fc000
 ExceptionList: 0036f904
 StackBase: 00370000
 StackLimit: 0036c000
 SubSystemTib: 00000000
 FiberData: 00001e00
 ArbitraryUserPointer: 00000000
 Self: 005fc000
 EnvironmentPointer: 00000000
 ClientId: 00001900 . 0000022c
 RpcHandle: 00000000
 Tls Storage: 00875a88
 PEB Address: 005f9000
 LastErrorValue: 0
 LastStatusValue: 0
 Count Owned Locks: 0
 HardErrorMode: 0

By performing attach in a process and executing the "~" command, it’s possible to

view all threads in the process:

6

0:001> ~
 0 Id: 1ae8.1e60 Suspend: 1 Teb: 0000005b`50329000 Unfrozen
. 1 Id: 1ae8.9cc Suspend: 1 Teb: 0000005b`5033b000 Unfrozen

It’s possible to notice the existence of two threads, 0 and 1. With the ~nk command,

it’s possible to view the stack of each thread, where "n" will be the thread's identifier.

Notice that the ~1k command shows the stack of thread number 1:

0:001> ~1k
 # Child-SP RetAddr Call Site
00 0000005b`501ffc68 00007ffa`eb4cd3cb ntdll!DbgBreakPoint
01 0000005b`501ffc70 00007ffa`eaac7c24
ntdll!DbgUiRemoteBreakin+0x4b
02 0000005b`501ffca0 00007ffa`eb46cea1
KERNEL32!BaseThreadInitThunk+0x14
03 0000005b`501ffcd0 00000000`00000000
ntdll!RtlUserThreadStart+0x21

Stacks are crucial for the functioning of the threads, and without both, it’s impossible

for a program to remain active in an operating system.

THE FIRST THREAD OF A PROCESS

Whenever we open a program, a new process is created. During the creation of each

new process, a thread is also made. Whenever a thread is executed, a new space in

the memory is reserved so that both local variables, as well as parameters and return

addresses of function calls are allocated. In addition, new frames are created and

inserted into memory whenever a thread makes a new call. A frame is basically the

collection of all the data needed to perform a function. It’s precisely this reserve of

memory that we call stack.

The Windows memory manager handles 3 types of stacks: The dpc stack, the user

stack and the kernel stack. We remind you that the Windows memory manager will

7

automatically reserve 1 MB of memory for the User Stack when creating the new

thread.

As the name implies, the best way to explain how the stack works is by comparing it

to a “stack of plates”. Where the elements to be removed (POP) or inserted (PUSH)

will always be at the top of the pile; that's why the stack is known for its LIFO (Last In,

First Out) semantics.

The image below illustrates a layout about the stack structure during a function call in

an x86 architecture.

Function Parameter 1

Function Parameter 2

Function Parameter N

Return Address

Frame Pointer

Exception Handler Frame

Local Variable 1

Local Variable 2

Local Variable N

Function Saved Registers

Next, we have a drawing showing how the stack growth develops. We illustrate that it

starts from a memory address, growing downwards towards lower addresses:

8

For that reason, when we talk about the top of the stack in x86, we talk about the low

address. However, many debuggers have an inverted view of the stack.

For a better understanding of how the stack works, we can load an executable for

testing, such as Windows notepad.exe, which will be our example.

Using the command x notepad!*main*, you can view the main of the program:

0:000> x notepad!*main*

00cdf8da notepad!__mainCRTStartup (void)

00ce3440 notepad!_imp____getmainargs = <no type

information>

00ccc303 notepad!WinMain (_WinMain@16)

00cdf8d0 notepad!WinMainCRTStartup (_WinMainCRTStartup)

To insert a breakpoint in the notepad!WinMainCRTStartup function, we use the bu

command. To list the inserted breakpoints, we use the bl command, as can be seen

below:

0:000> bu notepad!WinMainCRTStartup

0:000> bl

 0 e Disable Clear 00cdf8d0 0001 (0001) 0:****

notepad!WinMainCRTStartup

High address

 Low address

Bottom of stack

Top of stack

Stack grows

9

So, when executing the program, we stop at the first function of our main:

0:000> g

ModLoad: 75cc0000 75ce5000 C:\Windows\SysWOW64\IMM32.DLL

Breakpoint 0 hit

eax=0019bf1a ebx=005b2000 ecx=00cdf8d0 edx=04040010 esi=00cdf8d0

edi=00cdf8d0

eip=00cdf8d0 esp=0063f930 ebp=0063f93c iopl=0 nv up ei pl

zr na pe cy

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b

efl=00000247

notepad!WinMainCRTStartup:

00cdf8d0 e8b0080000 call notepad!__security_init_cookie

(00ce0185)

Once in the call notepad!__security_init_cookie function, you can see the values of

the records:

0:000> t

eax=0019bf1a ebx=005b2000 ecx=00cdf8d0 edx=04040010 esi=00cdf8d0

edi=00cdf8d0

eip=00ce0185 esp=0063f92c ebp=0063f93c iopl=0 nv up ei pl

zr na pe cy

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b

efl=00000247

notepad!__security_init_cookie:

00ce0185 8bff mov edi,edi

Then, you can view the ESP and EBP records, on lines 01 and 02, respectively:

0:000> k

 # ChildEBP RetAddr

00 0063f928 00cdf8d5 notepad!__security_init_cookie

01 0063f92c 75656359 notepad!WinMainCRTStartup+0x5

02 0063f93c 772d7c24 KERNEL32!BaseThreadInitThunk+0x19

03 0063f998 772d7bf4 ntdll!__RtlUserThreadStart+0x2f

10

04 0063f9a8 00000000 ntdll!_RtlUserThreadStart+0x1b

From the image above, it can be seen that the values contained in the stack are

instructions written by the process in order to create the first thread to execute the

program. In addition, it’s possible to observe the moment when the EIP (Extended

Instruction Pointer) is stopped over the MOV EDI, EDI instruction. It’s also possible to

notice that the EBP (Extended Base Pointer) register is pointing to the

BaseThreadInitThunk API of kernel32.dll. For this reason, this is one of the first

frames to be created, given the initialization of the first thread that accompanies the

creation of the process.

Each time a thread makes a function call, a new frame is inserted into the stack before

the program executes any function; as a result, the operating system executes a series

of calls that are part of the process of creating the threads themselves.

Therefore, it’s important to note that, for each language or version of the compiler, the

thread initiation functions may be different in their aspect, but not in their result. It’s

important to realize that, in most cases, the first functions to be loaded into a program

will be related to the creation of its first thread.

PROLOGUE, CODE AND EPILOGUE

As we saw earlier, a program's first function does not always belong to its code. See

the following code example:

int main(int argc, char* argv[])
{
 char buffer[20];

 printf("Type anything\n");
 gets_s(buffer, sizeof(buffer));

}

11

The image below shows the Entry Point of the program and the arguments that belong

to the Main of the program:

In the next image, it’s possible to see the stack at the moment when the EIP is pointed

at our call _main. Note that below the address 0x002DFBA0 is the pointer to

BaseThreadInitThunk, as seen earlier:

Once inside the function, you can view the following set of instructions:

12

.text:000A1040 push ebp

.text:000A1041 mov ebp, esp

.text:000A1043 sub esp, 18h

The 3 instructions above form the prologue of a function. The prologue of a function

ensures that the stack is prepared for the new function to run smoothly.

Before explaining what each of the lines above means, we need to understand the

purpose of each register. The EBP register points to an address in memory, usually

being the base of the frame, in order to facilitate the location of the arguments and

variables of a function, see the image below:

The ESP register, on the other hand, is the index that will always point to the top of

the stack, as shown in the following image:

13

Returning to the aforementioned set of instructions, note that the second instruction

(PUSH EBP) inserts the EBP value into the stack via PUSH. The second instruction

(MOV EBP, ESP) moves the ESP register to EBP, because if the ESP register is lost,

it will still be possible to restore it via EBP, thus establishing the start of a new stack

frame. Later on, we will see how the EBP register can be used.

The table below shows the state of the stack at the time we went through the prologue:

0x002DFB58 002DFBA0 Stack[00000F10]:002DFBA0 PUSH EBP

0x002DFB5C 000A1249 start-88 RETURN ADDRESS

The return address guarantees the location of the program to be returned to when

exiting the function; because, when a function call is executed, the function's return

address is inserted (PUSH) in the stack.

It’s also important to realize that the stack grows from top to bottom, decreasing the

stack pointer (ESP). Note that, in the table above, the stack address is 0x002DFB5C.

14

Thus, when the PUSH EBP is executed, the ESP value is decreased by 4 bytes

(0x002DFB58).

The last instruction (SUB ESP, 0x18) subtracts 18 bytes or 24 in decimal from the

stack pointer. This subtraction is important, as it creates space for local variables.

Looking at the disassembler, it is easy to see which local variables are reserved:

When we subtract 24 bytes from the stack pointer, a space is reserved on the stack.

The figure below shows the stack after subtraction:

The new address of the stack pointer directs to 0x002DFB40. Thus, when we add

0x18 to address 0x002DFB40, we’ll have the value 0x002DFB58. Likewise, if we

subtract 0x18 from address 0x002DFB58, we’ll arrive at the value of the current stack

pointer. Looking at the table below, it’s possible to observe the stack when the

subtraction occurs:

0x002DFB40 Stack Pointer Sub esp, 0x18

0x002DFB58 Saved EBP Push EBP

15

0x002DFB5C Return address Call _main

After the stack pointer (ESP) was set to receive the local variables, the next

instructions related to the local variables were stored in the stack. The next image

shows the relationship of the variables to the stack:

The CANARY and Buf variables are stored in the stack using the following instructions:

mov [ebp+CANARY], eax
lea eax, [ebp+Buf]

The EBP register is used as a pointer that references the position of each local

variable. This action is, by default, the purpose of the EBP register; unlike the ESP

register, which changes continuously during the execution of the function. For that

reason, it would be difficult to use ESP as the base of the frame.

As we saw earlier, the program has two local variables, Buf and Canary. Later on, we’ll

talk about the variable Canary, as it’s a variable inserted by the compiler in the program

routine.

Now, let's see how the stack behaves when receiving the two variables with their

respective values:

16

The table below shows, in more detail, the stack when it receives the variables:

0X002DFB34 Buf pointer = 002DFB40 push eax

0X002DFB38 Buf size = 0x14 push 14h

0X002DFB3C Push ‘TEXT’ string push offset Format ; "TEXT"

0X002DFB40 Buf = 41414141 lea eax, [ebp+Buf]

0X002DFB44 Buf = 41414141

0X002DFB48 Buf = 41414141

0X002DFB4C Buf = 41414141

0X002DFB50 Buf = 00414141

0X002DFB54 Canary mov [ebp+CANARY], eax

0X002DFB58 Saved EBP Push ebp

0X002DFB5C Return Address Call _main

After executing the body of the program, we arrive at the epilogue; whose responsibility

is to ensure that the stack is restored to the point before the CALL _main call. The

image below shows the epilogue of the function:

.text:000A1069 add esp, 0Ch

.text:000A1075 mov esp, ebp

.text:000A1077 pop ebp

17

The first instruction adds 0x0C to the stack pointer. The purpose of this sum is to

restore the stack after the three pushes, which are the parameters used in the function,

namely: Buf, Canary and push offset Format (printf). It’s important to remember that,

with each new function, it’s necessary to restore the stack to its previous state.

To find out if the value added in ESP is correct, just add the values in bytes of each

parameter in our routine:

Buf (4 bytes) + Canary (4 bytes) + Push offset Format(4 bytes) =
0XCh

After adding 0xC to the stack pointer, the new ESP value will be the address

0X002DFB40:

0X002DFB40 Buf = 41414141 lea eax, [ebp+Buf]

0X002DFB44 Buf = 41414141

0X002DFB48 Buf = 41414141

0X002DFB4C Buf = 41414141

0X002DFB50 Buf = 00414141

0X002DFB54 Canary mov [ebp+CANARY], eax

0X002DFB58 Saved EBP Push ebp

0X002DFB5C Return Address Call _main

The second instruction moves the value from EBP to ESP, remembering that EBP has

the same value that ESP had when stored in the prologue. The following table shows

the moment when ESP will point to the bottom of the frame:

0X002DFB58 Saved EBP mov esp, ebp

0X002DFB5C Return Address pop ebp

18

Keeping in mind that, at this moment, the value of ESP is equal to that of EBP, the

POP EBP instruction will leave the ESP register pointing to the return address. In

addition, through these techniques, the process is able to reserve the necessary

space for the functions, as well as for their return.

HOT PATCHING

Hot Patching is a method of updating a system or program without having to download

a new version. Updates are made dynamically to the executable or the vulnerable

system.

After explaining the three usual instructions used in the prologue, we will present a

fourth instruction, which can often be found. That instruction is MOV EDI, EDI. Below

is an example of a prologue with it:

Would this instruction be a part of the prologue? How can an instruction with null effect

have any practical use? The MOV EDI, EDI instruction has no meaning, because even

the flags aren’t changed when it is executed. However, to further complicate its

concept, Microsoft defines it as one that "is equivalent to two NOP (NO OPERATION),

and that has enough space for a short jump (jmp short)".

Well, the instruction MOV EDI, EDI does not belong to the prologue of the function;

and its usefulness is to leave a space reserved for future modifications, which is fast

enough to be worth its existence in the program.

19

Once the instruction is replaced by a jmp short (2 bytes), we can be taken to a space

that precedes the first instruction of the entry point of that routine, whose region has

5 bytes reserved for writing. However, unlike the short jump, the 5-byte 'full jump' is

able to redirect the program flow to any new written instructions for hot patching.

The image below shows the 5 bytes that precede our entry point:

If there was no MOV EDI, EDI instruction, the hot patching would have to be performed

on an instruction that has an impact on the program, or that is difficult to restore. Which

would lead to correction risks. Thus, overwriting an instruction that is important or

difficult to reconstruct would not be a good option. For this reason, Microsoft has

decided to insert one more instruction, the modification cost of which would be zero,

as well as the risks of altering important parts of the program. Besides, considering

the execution time, the instruction MOV EDI, EDI is still 50% faster than the two

consecutive NOPS.

It’s worth remembering that you can add the patch option on demand to Visual C++

using the compilation flag /hotpatch.

20

CALLING CONVENTIONS

When a code is compiled in Visual C/C++, calling conventions are established. In

many cases, developers belittle the issue, so that most of the time, arguing about it is

unnecessary.

Traditionally, functions made in C/C++ have the same behavior in relation to the stack.

Identifying the different types of calling conventions teaches us different ways of how

arguments can be passed and cleared from the stack.

All of our examples, so far, are being compiled using the standard __cdecl convention,

where arguments are passed from right to left, example:

Push Arg1
Push Arg2
Push Arg3
Call function
Add esp, 0xC

Below is an example of a call:

int __cdecl function(int a, int b, int c);

int function(int a, int b, int c)

{

 int num = a + 2;

 int num2 = b + 3;

 int num3 = c + 4;

 int sum = num + num2 + num3;

 return sum;

}

int main()

{

 return function(10, 20, 30);

21

}

The table below shows the stack layout when using the above function:

EBP + 16 int c

EBP + 12 int b

EBP + 8 int a

EBP + 4 Return address

EBP Saved ebp

EBP - 4 num

EBP - 8 num2

EBP - 12 num3

EBP - 16 sum [ESP]

A second convention, __stdcall, can be called using the /Gz compiler flag that

specifies its use for all functions. The two main characteristics of __stdcall are: The

arguments are executed from right to left, and the stack is cleaned up by the function

that called it. Therefore, it is possible to create smaller executables than the __cdecl

convention; because, with __cdecl, the stack cleanup must be generated for each

function call.

Below is a code example with the __stdcall convention changed:

int __stdcall sum (int a, int b);

int sum (int a, int b)
{
 return a + b;
}

int main()
{

22

int c = sum(2, 3);

printf("%d", c);

}

The third convention, __fastcall, is made in such a way that some arguments are

written in registers. One of the advantages of __fastcall is that operations carried out

through registers are faster than the stack.

You can use the /Gr compilation flag to specify __fastcall for all functions. The main

feature of __fastcall is that its first two function arguments are entered in the ECX and

EDX registers. The rest of the arguments are inserted in the stack from right to left.

The following table informs the main differences between the three types of

convention:

__cdecl It is the standard convention, and its biggest advantage is due to
the fact that it allows the existence of a variable number of
arguments. Generally, executables tend to be larger.

__stdcall It doesn’t allow a variable number of arguments, it’s possible to
create smaller executables.

__fastcall Write some of its arguments in the registers, while the rest are
inserted into the stack. Its biggest advantage is the speed in the
call of functions.

It’s important not to forget, that when mixing the types of calling conventions, some

problems can be incurred, these are called calling conventions mismatch2.

2 To learn more about calling conventions mismatch we recommend reading the blog The Old New

Thing [https://devblogs.microsoft.com/oldnewthing/20040115-00/?p=41043]

https://devblogs.microsoft.com/oldnewthing/20040115-00/?p=41043

23

FRAME POINTER OMISSION

Frame Pointer Omission (FPO) is a technique that uses the base frame register (EBP)

as a multi-purpose register. Generally, its use is linked to the speed gain; thus, the

compiler uses EBP to store various types of data. FPO can cause problems especially

for those who are programming directly in assembly; therefore, care should be taken

when using the stack pointer.

Debugging a program with FPO can be confusing; because, in the event of a crash

without the frame pointer, the debugger won’t be able to generate the stack trace, the

generation will only occur if the symbols are present. Therefore, the use of FPO makes

debugging difficult.

If an executable crash using FPO, your dump won’t contain the stack frame pointer.

Therefore, the debugger won’t be able to generate the stack trace correctly from that

dump. The stack trace can only be restored completely if the symbols are present in

the program. Since, the FPO information is recorded in the program's symbol file.

Anyway, there’s a possibility to restore that stack trace manually; however, this task

will never be trivial, besides, it cannot be said that it’s always possible.

The following images show the difference between a routine of an executable without

FPO and another with FPO, respectively:

0:000> uf 006a1040

Perilogue!main

 11 006a1040 55 push ebp

 11 006a1041 8bec mov ebp,esp

 11 006a1043 83ec18 sub esp,18h

 11 006a1046 a104306a00 mov eax,dword ptr

[Perilogue!__security_cookie (006a3004)]

 11 006a104b 33c5 xor eax,ebp

 11 006a104d 8945fc mov dword ptr [ebp-4],eax

 14 006a1050 6800216a00 push offset Perilogue!`string'

24

(006a2100)

 14 006a1055 e8b6ffffff call Perilogue!printf (006a1010)

 15 006a105a 8d45e8 lea eax,[ebp-18h]

 15 006a105d 6a14 push 14h

 15 006a105f 50 push eax

 15 006a1060 ff15b4206a00 call dword ptr

[Perilogue!_imp__gets_s (006a20b4)]

 17 006a1066 8b4dfc mov ecx,dword ptr [ebp-4]

 17 006a1069 83c40c add esp,0Ch

 17 006a106c 33cd xor ecx,ebp

 17 006a106e 33c0 xor eax,eax

 17 006a1070 e804000000 call

Perilogue!__security_check_cookie (006a1079)

 17 006a1075 8be5 mov esp,ebp

 17 006a1077 5d pop ebp

 17 006a1078 c3 ret

0:000> uf 006b1040

Perilogue!main

 11 006b1040 83ec18 sub esp,18h

 11 006b1043 a104306b00 mov eax,dword ptr

[Perilogue!__security_cookie (006b3004)]

 11 006b1048 33c4 xor eax,esp

 11 006b104a 89442414 mov dword ptr [esp+14h],eax

 14 006b104e 6800216b00 push offset Perilogue!`string'

(006b2100)

 14 006b1053 e8b8ffffff call Perilogue!printf (006b1010)

 15 006b1058 8d442404 lea eax,[esp+4]

 15 006b105c 6a14 push 14h

 15 006b105e 50 push eax

 15 006b105f ff15b4206b00 call dword ptr

[Perilogue!_imp__gets_s (006b20b4)]

 17 006b1065 8b4c2420 mov ecx,dword ptr [esp+20h]

 17 006b1069 83c40c add esp,0Ch

 17 006b106c 33cc xor ecx,esp

 17 006b106e 33c0 xor eax,eax

 17 006b1070 e804000000 call

Perilogue!__security_check_cookie (006b1079)

 17 006b1075 83c418 add esp,18h

25

 17 006b1078 c3 ret

Note that, in the first image, the use of the EBP register is constant. In the second

image, the EBP record doesn’t appear in the routine at any time. The only register

used as a guide in the stack is ESP itself, when using FPO.

In the following image, it’s possible to view the EBP when the application with FPO is

stopped at its Entry Point:

0:000> k

 # ChildEBP RetAddr

00 006afb80 006b1249 Perilogue!main // [EBP]

01 (Inline) -------- Perilogue!invoke_main+0x1c

02 006afbc8 75656359 Perilogue!__scrt_common_main_seh+0xfa

03 006afbd8 772d7c24 KERNEL32!BaseThreadInitThunk+0x19

04 006afc34 772d7bf4 ntdll!__RtlUserThreadStart+0x2f

05 006afc44 00000000 ntdll!_RtlUserThreadStart+0x1b

0:000> r

eax=751b10e0 ebx=00901000 ecx=00000000 edx=00000000 esi=00a44750

edi=00a449c8

eip=006b1040 esp=006afb84 ebp=006afbc8 iopl=0 nv up ei pl

nz na po nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b

efl=00000202

Perilogue!main:

006b1040 83ec18 sub esp,18h

The next image shows the first local variable on the stack; and, below, the return

address of the function. Observe that, above the return address, there’s no base

pointer:

0:000> p

eax=3ad9c74f ebx=00901000 ecx=00000000 edx=00000000 esi=00a44750

edi=00a449c8

eip=006b104a esp=006afb6c ebp=006afbc8 iopl=0 nv up ei pl

nz na po nc

26

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b

efl=00000202

Perilogue!main+0xa:

006b104a 89442414 mov dword ptr [esp+14h],eax

ss:002b:006afb80=00000002

0:000> k

 # ChildEBP RetAddr

00 006afb80 006b1249 Perilogue!main+0xe // [esp+14h]

01 (Inline) -------- Perilogue!invoke_main+0x1c // return

02 006afbc8 75656359 Perilogue!__scrt_common_main_seh+0xfa

03 006afbd8 772d7c24 KERNEL32!BaseThreadInitThunk+0x19

04 006afc34 772d7bf4 ntdll!__RtlUserThreadStart+0x2f

05 006afc44 00000000 ntdll!_RtlUserThreadStart+0x1b

Note that the FPO doesn’t use the EBP register as we saw earlier. Caution is required

when creating executables with the FPO, as reliance on a single register makes the

stack more susceptible to failure3, such that any corruption in its pointers will cause

failure in the search for local variables or at the return point. It’s recommended to be

careful about the amount of garbage that the program can write into the stack.

STACK OVERFLOW

A stack overflow occurs when a variable stored in the stack is filled with a buffer that

exceeds its size, causing arbitrary writing on the stack. Usually, the basic exploitation

scenarios that involve stack overflow are those whose return addresses are changed

to a controlled memory address.

The variants that cause a stack overflow are diverse, and in many cases may be the

result of other vulnerabilities. For this reason, we won’t analyze the technical aspects

of other bug classes, focusing only on those that make direct reference to the stack.

3 For another example of a stack failure involving FPO we recommend the following reading

[https://devblogs.microsoft.com/oldnewthing/20040116-00/?p=41023]

https://devblogs.microsoft.com/oldnewthing/20040116-00/?p=41023

27

Regardless of the bug class, what we care about is the behavior that the stack will

exhibit from the exploitation of a vulnerability.

Below is an example of a stack overflow4:

int main(int argc, char** argv)
{
 int cookie;
 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);
 gets(buf);

 if (cookie == 0x41424344)
 printf("you win!\n");
}

Looking at the code above, we see the use of the gets5 function, whose defect is that

it doesn’t have a value that controls the size of its input.

The image below shows the main routine, without symbols:

4 The example in question was taken from

[http://ricardonarvaja.info/WEB/EXPLOITING%20Y%20REVERSING%20USANDO%20HER
RAMIENTAS%20FREE/EJERCICIOS/]
5 More about the gets function can be found at [(https://docs.microsoft.com/pt-br/cpp/c-runtime-
library/gets-getws?view=msvc-160)]

http://ricardonarvaja.info/WEB/EXPLOITING%20Y%20REVERSING%20USANDO%20HERRAMIENTAS%20FREE/EJERCICIOS/
http://ricardonarvaja.info/WEB/EXPLOITING%20Y%20REVERSING%20USANDO%20HERRAMIENTAS%20FREE/EJERCICIOS/
https://docs.microsoft.com/pt-br/cpp/c-runtime-library/gets-getws?view=msvc-160
https://docs.microsoft.com/pt-br/cpp/c-runtime-library/gets-getws?view=msvc-160

28

In the previous image, we see two local variables, var_4 and var_54 (it’s possible to

rename the variables with more meaningful names, which we’ll do later). Now let's

look at the stack of the Main function and the arrangement of the local variables,

already renamed, plus the parameters:

Let's fill the stack with the maximum value that the Buffer variable expects to receive

(80 in decimal). The image below shows the stack filled with 80 characters, and the

cookie variable:

29

Since the gets function doesn’t limit the size of the user's input, it’s possible to insert

more bytes into the stack until we reach the address of the cookie variable. Starting

from the address 0x12FF2C until 0x12FF3C we have 5 DWORDS, which results in 20

bytes from the expected end of the buffer to the cookie address.

Inserting 100 bytes, we see that the value of the cookie was overwritten by 41414141:

After looking at the application code, we see that there’s a condition to be met:

30

if (cookie == 0x41424344)
 printf("you win!\n");

Thus, we must insert at the end of the payload the ASCII values of 0X41424344

(ABCD):

And then, finally, look at the stack:

It can be seen that the comparison will never be correct, because the order of the

characters is reversed in the x86 architecture. In other words, the comparison that

occurs at that moment is: CMP [44434221h], 41424344h. We call this sort of ordering

little endian6. Thus, for our comparison to be successful, we must insert the final

characters in the inverted order, DCBA. Check this out in the image below:

6 For an example of little indian see [https://searchnetworking.techtarget.com/definition/big-
endian-and-little-
endian#:~:text=For%20example%2C%20in%20a%20big,1000%2C%204F%20at%201001)]

https://searchnetworking.techtarget.com/definition/big-endian-and-little-endian#:~:text=For%20example%2C%20in%20a%20big,1000%2C%204F%20at%201001
https://searchnetworking.techtarget.com/definition/big-endian-and-little-endian#:~:text=For%20example%2C%20in%20a%20big,1000%2C%204F%20at%201001
https://searchnetworking.techtarget.com/definition/big-endian-and-little-endian#:~:text=For%20example%2C%20in%20a%20big,1000%2C%204F%20at%201001

31

So, it was possible to redirect the flow of the program through a stack overflow:

In the same way that we changed the value of the cookie, it would also be possible to

continue with our overflow until we overwrite the return address.

The following image will show that, continuing the overflow, it’s possible to reach the

return address. Note that, at this point, the EIP has the same value as the return

address:

32

Let's look at a second example of stack-overflow:

void copy(char* input)
{
 char buf[64];
 strcpy(buf, input);
}

int main(int argc, char* argv[])
{
 copy(argv[1]);
 return 0;
}

The second argument that the program will receive is argv[1], whose value will be

used as a parameter of the copy function. The copy function, on the other hand,

contains both the local variable (buf) and the strcpy function. The latter is responsible

for copying the content of the input parameter to the buf variable. The strcpy function

is an insecure function, as it doesn’t check whether the destination buffer will support

the entered value. Therefore, it’s possible to see that the code in the previous image

shows a programming failure.

Let's see the situation of the stack after the execution of the program:

0014F710 0014F72C Stack[00000550]:0014F72C // Argument address
buf
0014F714 0014F72C Stack[00000550]:0014F72C // Argument address
input
0014F718 41414141 // Start of variable buf
0014F71C 41414141
0014F720 41414141
0014F724 41414141
0014F728 41414141
0014F72C 41414141
0014F730 41414141
0014F734 41414141
0014F738 41414141
0014F73C 41414141

33

0014F740 41414141
0014F744 41414141
0014F748 41414141
0014F74C 41414141
0014F750 41414141
0014F754 00414141 // End of variable buf
0014F758 0014F7A0 Stack[00000550]:0014F7A0 // EBP saved in the
prologue
0014F75C 00851234 start-88 // Return address

The first point to be controlled by our buffer would be the saved EBP value

(0x0014F7A0). Due to the fact that the EBP contains the frame pointer, if the attacker

controls the memory value 0x0014F7A0, the execution of the code would be

transferred to the memory region of the pointer in question.

However, if the EBP cannot be controlled, we proceed with the execution by

overwriting the value of the return address; that way, the attacker could still skip

execution to any point controlled by him.

Once the return address is overwritten, the attacker can also begin to explore the

argument following the return address.

Finally, we conclude that the concept of stack overflow is quite simple. For this reason,

the important thing is to know how to exploit this type of failure, since we saw that it

was possible to conduct the flow of the program, as well as change its return address.

Once a stack overflow occurs, it can be exploited in a variety of ways, from replacing

local variables, value of parameter pointers, return addresses, and exception

structures7, to attacks against VTable, or even against an array index that doesn’t have

a defined limit.

7 Demonstration of exploitation of the exception structure through a stack overflow

[https://resources.infosecinstitute.com/topic/seh-exploit/]

https://resources.infosecinstitute.com/topic/seh-exploit/

34

FLAGS DA STACK

We saw earlier how the stack can be filled easily through an overrun buffer, and that

the results of an overrun won’t always result in a crash. In order to maintain the integrity

of the stack, the canary was created, which in Microsoft compilers is known as the

guard stack, whose flag used in the compiler is /GS.

The canary technique consists of inserting a check value between the local variables

and the return address. The advantages are great, since the computational cost is

minimal, requiring little performance to execute it.

The table below shows the stack using the canary:

Function Parameter N

Function Parameter 2

Function Parameter 1

Return Address

Frame Pointer

Canary

Exception Handler Frame

Local Variable 1

Local Variable 2

Local Variable N

Function Saved Registers

By default, Visual C++ already inserts the /GS flag at the time of compilation. Let's

see in practice how the canary behaves in an application:

.data:00403004 ___security_cookie dd 0BB40E64Eh

35

mov eax, ___security_cookie
xor eax, ebp
mov [ebp+CANARY], eax

O

The __security_cookie is generated by CRT (C RunTime) during startup, being

different with each new execution. If the application does not use CRT, a call must be

made to __security_cookie. Then, the value of the __security_cookie will be

inserted in EAX and an XOR will be performed with the EBP value. The EBP value will

also be random with each new run. In addition, the canary value will be stored in a

position (DWORD) above the return address.

Using the last code example, compiled with /GS, we can see that the canary is located

between the local variable and the frame pointer:

-00000044 Buffer db 64 dup(?)
-00000004 CANARY dd ?
+00000000 s db 4 dup(?)
+00000004 r db 4 dup(?)

In the routine that precedes the return address, it’s possible to view the code

responsible for checking the integrity of the canary value:

mov ecx, [ebp+CANARY]
xor ecx, ebp
xor eax, eax
call _security_check

When performing an XOR between the value of the canary and the original value of

the EBP, it’s possible to restore the value of the __security_cookie. In this case, since

this value is the same as the one created previously, the variable CANARY hasn’t

been overwritten, which guarantees that the return address has also not been

changed. However, in case the value is not the same as the original

_security_cookie, the program will simply end.

36

The following image compares ECX with __security_cookie:

With the use of the canary, the return address, the exception handler address of a

function and the function parameters will be protected. However, the canary won’t

prevent buffer overrun on the stack and other types of attacks.

Another important flag is /NX, known as DEP8 (Data Execution Prevention). It prevents

certain memory regions from being executable, so even if an attacker were able to

write malicious data to the stack, he wouldn’t execute them, as the memory region of

the stack would be protected against code execution9.

A third flag, also important, is /RTC (RunTimeChecks). The RTC performs some

essential checks. For example:

● /RTCs: Checks the stack frame for errors at runtime. Each time a function is

called, it initializes all local variables with random values, in order to avoid

values from previous calls.

● /RTCc: Provides protection against data loss. An example of such a loss would

be a casting of the ULONG type for a BYTE, where possibly data will be lost.

This check, on the compiler, will show an error message whenever a cast

results in data loss.

8Starting with Windows 7, DEP is already activated by default.
9However, there is a method to bypass DEP, for more details see.

[https://fluidattacks.com/blog/bypassing-dep/]

https://fluidattacks.com/blog/bypassing-dep/

37

● /RTCu: Provides protection for uninitialized variables. The compiler will always

show an error whenever a variable is accessed, before its initialization.

The /RTC compilation flag was designed to work with builds in debug mode. Therefore,

the checks carried out by the RTC don’t work in programs in the release mode.

SHADOW STACK

Intel, starting in 2016, implemented in some of its chipsets, what they called CET

(Control-Flow Enforcement Technology). A technology whose purpose is to protect

users from control-flow hijacking attacks. However, only Windows 10 supports this

technology.

The techniques implemented by CET are: Shadow Stack and Indirect branch tracking.

But as this document is about the stack, we’ll only cover the implementation of the

Shadow Stack. Microsoft decided to call this technique, hardware-enforced stack

protection; but some security researchers also refer to it as Return Flow Guard (RFG).

When CET is active, a new register is used, the SSP (Shadow Stack Pointer). The

SSP register cannot be used for the same purposes as the original stack.

Like the ESP register, which points to the top of the stack, the SSP register points to

the top of the shadow stack.

When the shadow stack is active, and the program is close to executing a function, at

that moment, the return address is inserted in both stacks. If the return address is not

the same in both stacks, the processor will generate an exception (INT 21 - Control

Protection Fault).

The shadow stack technique is nothing more than a backup of the return address for

each function. If the return address is overwritten, at the end of the routine, a

38

comparison with the shadow stack will be performed to compare the return values. If

the values are not the same, the program will be terminated.

After being discontinued by Microsoft, the Return Flow Guard (RFG10) was relaunched

this year. However, this type of implementation can only be seen on intel's 11th

generation processors, called Tiger Lake11.

WHAT CHANGES IN x64?

In this section, we will cover the main differences between the x86 and x64 architecture

stacks.

In the debugger, 64-bit values are represented by two 32-bit numbers, and sometimes

separated by a grave accent (`). For example, 0x60000000`00000000. This value is

equivalent to 0x60000000 on x86 processors.

Registers have also been extended on the x64 architecture. They now begin with the

letter "r" instead of the letter "e". The x86 mnemonics are still maintained. For example,

EBX still exists and is equivalent to the least significant 32 bits in the RBX register. In

addition, another 8 registers were added, going from register r8 to register r15.

Next, we can see the registers in an x64 architecture:

0:000> r
rax=0000000000000000 rbx=0000000000000000 rcx=00000000774d99fa
rdx=0000000000000000 rsi=00000000001cf520 rdi=00000000774774f0
rip=0000000077516bb0 rsp=00000000001cef30 rbp=0000000077477560
 r8=00000000001cef28 r9=0000000077477560 r10=0000000000000000
r11=0000000000000246 r12=00000000775a2c90 r13=0000000000000000
r14=00000000775a2e50 r15=000007fffffd4000
iopl=0 nv up ei pl zr na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b
efl=00000246

10 For more information [https://windows-internals.com/cet-on-windows/]
11 Also [https://en.wikipedia.org/wiki/Tiger_Lake_(microprocessor)]

https://windows-internals.com/cet-on-windows/
https://en.wikipedia.org/wiki/Tiger_Lake_(microprocessor)

39

On Windows x64, we have only one type of convention:

rcx: Contains the first parameter passed to the function.
rdx: Contains the second parameter passed to the function.
r8: Contains the third parameter passed to the function.
r9: Contains the fourth parameter passed to the function.
rax: Contains the result of a function.

If a function has more than 4 parameters, they’ll be stored in the stack from right to

left. The rightmost parameter will always be stored first in the stack.

The table below shows the layout of a 64-bit stack:

Parameters for the stack

R9

R8

RDX

RCX

Return

CONCLUSION

Throughout this article, we saw that the stack is aligned and organized through the

prologue, code and epilogue. In addition, we also studied how different types of calling

conventions can influence our understanding of the stack. We learned how the frame

point omission is able to handle the stack only with the ESP register. Finally, we saw

the compilation flags that involve stack security, such as the canary and the shadow

stack. Also, due to the difference between the architectures, we presented the

changes of the x64 version.

40

We conclude by remembering that the ways in which the stacks are built and

maintained – through prologues and epilogues based on different architectures or

even through compilation flags – may have their peculiarities or differences; but in the

end, what an attacker will always try to do is overwrite parameters, local variables, or

return addresses contained in the stack, no matter how the information got there.

